Artificial and online acquired noise dictionaries for noise robust ASR
نویسندگان
چکیده
Recent research has shown that speech can be sparsely represented using a dictionary of speech segments spanning multiple frames, exemplars, and that such a sparse representation can be recovered using Compressed Sensing techniques. In previous work we proposed a novel method for noise robust automatic speech recognition in which we modelled noisy speech as a sparse linear combination of speech and noise exemplars extracted from the training data. The weights of the speech exemplars were then used to provide noise robust HMM-state likelihoods. In this work we propose to acquire additional noise exemplars during decoding and the use of a noise dictionary which is artificially constructed. Experiments on AURORA-2 show that the artificial noise dictionary works better for noises not seen during training and that acquiring additional exemplars can improve recognition accuracy.
منابع مشابه
A Robust Feedforward Active Noise Control System with a Variable Step-Size FxLMS Algorithm: Designing a New Online Secondary Path Modelling Method
Several approaches have been introduced in literature for active noise control (ANC)systems. Since Filtered-x-Least Mean Square (FxLMS) algorithm appears to be the best choice as acontroller filter. Researchers tend to improve performance of ANC systems by enhancing andmodifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANCapplications an online secondary pat...
متن کاملImproving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملNoise robust exemplar matching for speech enhancement: applications to automatic speech recognition
We present a novel automatic speech recognition (ASR) scheme which uses the recently proposed noise robust exemplar matching framework for speech enhancement in the front-end. The proposed system employs a GMM-HMM back-end to recognize the enhanced speech signals unlike the prior work focusing on template matching only. Speech enhancement is achieved using multiple dictionaries containing speec...
متن کاملHow Realistic is Artificially Added Noise?
Evaluations of algorithms for robust automatic speech recognition (ASR) are often based on artificial noisy speech instead of realistic noisy speech. In this paper we compare the ASR performance of speech with artificial additive noise to the performance of realistic noisy speech. All data was recorded during the same recording campaign and with nearly identical channel characteristics. The sim...
متن کاملIs speech enhancement pre-processing still relevant when using deep neural networks for acoustic modeling?
Using deep neural networks (DNNs) for automatic speech recognition (ASR) has recently attracted much attention due to the large performance improvement they provide for a variety of tasks. DNNs are known to be robust to overfitting and to be able to remove speaker variability. Another important cause of variability in speech is the presence of noise. A lot of research has been undertaken on noi...
متن کامل